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Predicting current flow in spiral wound cell geometries

Jan N. Reimers∗
E-One Moli Energy (Canada) Ltd., R&D, 20 000 Stewart Crescent, Maple Ridge, BC, Canada V2X 9E7

Received 14 July 2005; received in revised form 2 August 2005; accepted 3 August 2005
Available online 25 October 2005

Abstract

A general method is described for calculating potential, current and heat-power distributions in electrode foils. The resulting theory is suitable
for cell designs with an arbitrary number of current collecting tabs. Example calculation results for a three tab cell design with an ohmic stack
impedance are shown. Internal mixing currents, a non-uniform stack current distribution, and sharply peaked heat generation near the tabs, are
predicted.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

Most commercial Li-ion cells consist of layers of foil current
ollectors, active electrodes, and separator coiled into a spiral
eometry, which is often referred to as a jelly roll. The jelly
oll cell geometry is not unique to the Li-ion chemistry. Emerg-
ng from a jelly roll there must be at least two tabs (usually

etal strips) which are, unfortunately, often also referred to as
urrent collectors. During discharge of such a cell, electrical cur-
ent will flow into the anode tab(s), along the anode foil, across
he electrode stack, along the cathode foil, and out the cathode
ab(s).

Over the past 20 years great progress has been achieved in
nderstanding the electrical and ionic current flows across the
lectrode stack of Li-ion, NiMH or lead acid cells. Given a suffi-
ient quality of transport and thermodynamic properties for the
lectrodes and electrolyte, it is possible to predict the dynamic
esponse of the stack for a given stack design. Having this capa-
ility should be an integral part of any cell design engineer’s tool
it. The theory and practical implementation of these techniques
as been described elsewhere (for a comprehensive review see
ef. [1] and references therein).

Much of this work treats the electrode-separator stack using a

conductivity of the current collector foils is very high in relation
to the effective conductivity of the stack. Hence any potential
drop in the foils and tabs can be ignored. This is indeed reason-
able for many commercial cell designs. However, with recent
interest in power optimized cells aimed at, for example, HEV
applications, the geometry may be modified to the point where
the impedance of foils becomes significant.

Some previous workers in this field have addressed this issue
in their models [2–4] for simple tab arrangements (one anode
and one cathode tab). The purpose of this work is to outline a
practical method for calculation of foil current and potential dis-
tributions for the general case, with any number of tabs, located
at arbitrary positions along the length of the electrode foils. With
commercial cells already on the market using numerous tabs per
electrode, this is not just a purely academic issue.

2. Cell geometry

Unfortunately the term current collector is often overloaded
to refer to both the tabs and the electrode foils. Since the dis-
tinction is important for understanding this work usage of this
overloaded term will be avoided. The cell geometry considered
in this work is shown schematically in Fig. 1 for a non trivial
ne dimensional model, the assumption being that the electronic arrangement of the tabs (two anode and one cathode tab). With
the z direction going into the page, the stack layers (foils, elec-
t
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rodes and separator) are in the xz plane. This diagram represents
n jelly roll as viewed end on after it has been unwound. The y
irection has been greatly magnified for clarity.
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Nomenclature

a, b adjustable parameters in the general solution to the
foil potential field equation, determined by exter-
nal boundary conditions

c adjustable parameter in the general solution to the
foil potential field equation, determined by exter-
nal boundary conditions (V cm−1)

d adjustable parameter in the general solution to the
foil potential field equation, determined by exter-
nal boundary conditions (V)

i stack current density (mA cm−2)
I externally applied current (A)
IA, IC anode and cathode foil currents (A)
L length of the electrodes in the x direction (cm)
n total number of tabs sticking out of the jelly roll
ni

A, ni
C number of internal tabs on the anode and cathode

electrodes
ne

A, ne
C number of external tabs on the anode and cathode

electrodes
nA, nC number of tabs (internal and external) on the an-

ode and cathode electrodes
ni, ne number of internal and external tabs on all elec-

trodes
O() higher order terms
q state of charge in the active stack (A h cm−2)
qA, qC heat generation rate in the anode and cathode foils

(W cm−2)
qstack heat generation rate in the stack (W cm−2)
rA, rC relative foil impedances, rA + rC = 1
RA, RC length specific anode and cathode foil resistivities

(m� cm−1)
Rfd

cell externally observed, finite difference cell
impedance (m�)

Rdiff
cell externally observed, differential cell impedance

(m�)
Rstack effective stack impedance (� cm2)
t time (s)
TA, TC anode and cathode foil thicknesses (�m)
Vcell externally observed cell voltage (V)
Vo(q) open circuit voltage curve for the active stack (V)
WA, WC anode and cathode foil widths (cm)
x distance along the length of the electrodes (cm)
y distance across the stack (�m)
z distance across the width of the electrodes, or jelly

roll height (cm)

Greek letters
α inverse length scale (cm−1)
εsolid, εpore solid and pore volume fractions in an electrode

or separator
κ electrolyte conductivity (S cm−1)
φ potential difference across the stack under load

(V)

φA, φC anode and cathode foil potentials (V)
φp particular solution to the foil potential field equa-

tion (V)
φleft, φright solutions to the homogenous foil potential field

equation (V)
ρA, ρC specific resistivity of the anode and cathode elec-

trode foils (�� cm)
σ electrical conductivity in the solid phase of an

electrode (S cm−1)

Subscripts
A anode
C cathode
j segment or tab index

The relevance of the jelly roll geometry to this work lies
only in the length of the electrodes in the x direction. Matters of
curvature are not important for the calculation of dc foil current
distributions (the dc resistance of a piece of wire does not change
when coiled).

Current runs along the foils in the x, or in-plane, direction and
through the stack in the perpendicular y, or through-plane, di-
rection. Following the convention in the cell modeling literature,
a positive stack current flows in the same direction as positive
ions, from anode to cathode, as indicated by the vertical arrows,
and corresponds the discharge of the cell. Along the foils, pos-
itive current flows in the positive x direction, as indicated by
the horizontal arrows. With these conventions, electron flow in
the foils is of course opposite to the current flow. In a real cell
the extent of the tabs in the x direction (tab width) is usually
<1% of the total electrode length. Indeed it is the width of the
contact points (weld pattern) that is relevant, and this is often
significantly narrower than the tab itself. In order to simplify the
analysis the contact width of the tabs is considered to be zero.
The z direction, going into the page, corresponds to the width of
the electrodes or the length/height of the jelly roll. Currents and
potentials are assumed to be constant in the z direction. Again
this is a very good approximation as long as the tab resistance
in negligible in the z direction.

F
r

ig. 1. Schematic cell geometry corresponding to an unwound jelly roll. Black
ectangles attached to the foils indicate the position of the tabs.
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Fig. 2. Current flow geometry for a spiral wound jelly roll with double sided
electrodes.

Fig. 3. Instructive resistor network.

Fig. 1 is a simplified version of the real jelly-roll geometry.
In commercial cells both electrodes are coated on both sides,
which means each foil has two stack directions to send current
into. The cell actually has two separate stacks in parallel. Fig. 2
also shows a current path flowing upwards from the anode foil
through stack #2, and into the cathode one jelly roll wrap further
away. In this work the offset effect will be neglected, which is
reasonable if the number of wraps is large. However, the double
stack effect must taken into account as will be described below.

Fig. 1 also attempts to show qualitatively, using arrow length,
what would be expected regarding the magnitudes of the vari-
ous currents. In particular the foil currents decrease in magnitude
away from the tabs as more and more current makes a right (or
left) turn and goes through the stack. What is not so obvious
is that the current distribution across the stack is non-uniform,
the current is reduced away from the tabs. As will be discussed
below, this is actually a transient effect at the beginning of dis-
charge. The situation is analogous to the current flow in the
simple resistor network shown in Fig. 3. If all three vertical re-
sistors are of equal value, and the horizontal resistors in any row
are equal, one finds that less current flows through the middle
resistor I2 < I1 = I3.

3. Theory

3

t
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b

Ohms law relates the current and potentials in the foil

− ρA

TAWA
IA(x) = −RAIA(x) = ∇φA(x) (1)

where for the anode ρA is foil resistivity (� cm), TA is the foil
thickness (cm), WA is the foil width (cm), φA is the potential
along the foil (V) and RA = ρA/TAWA is the length specific
foil resistance (� cm−1), with corresponding definitions for the
cathode. Note that the possibility of distinct foil widths for anode
and cathode is included, this is indeed the case in commercial
cells.

One can define the potential across the stack at any point
along the foils as

φ(x) = φC(x) − φA(x).

Similarly one can define a stack current density i (A cm−2).
Away from the tabs, detailed current balance in the anode foil
gives

∇IA(x) = −Wi(x), x �= xj. (2)

where xj is the location of the jth tab, and W = minimum
{WA, WC} is the active width (usually the cathode is narrower
than the anode so W = WC). This just says that away from the
tabs, the divergence of the current in the foil is proportional to
the flux across the stack at that point. Right at a tab the current
i
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∇
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.1. Foil current divergence

Where possible units will be written in square brackets, for
he various symbols as they are defined. This will hopefully help
he reader keep track of absolute, length and area specific cur-
ents and resistances. Many expressions are duplicated for anode
nd cathode. In some cases there are important sign differences
etween anode and cathode, in which case both expressions will
e explicitly written out for clarity.
s non-analytic, this will be discussed in more detail below. Due
o our choice of the current direction in the foils, for the cathode
oil current divergence the sign is reversed

IC(x) = Wi(x), x �= xj. (3)

.2. Effective stack impedance

In order to proceed to the next stage, a relationship is re-
uired between the stack potential and stack current density. A
omprehensive description of this relationship is provided by
he one-dimensional stack models described in ref. [1]. Because
f diffusion effects and active particle surface reaction kinetics,
his relationship is in general non linear:

(x) = Vo(q(x)) − Rstack(x)i(x) + O(i2) + · · · . (4)

here Vo(q) (V) is the open circuit voltage (OCV) of the stack,
(A h cm−2) is the state of charge in the stack, Rstack (� cm2) is

he effective stack impedance at i = 0, and O(i2) indicates terms
f order i2 or higher. Vo can be measured directly on a full cell
t low current, or it can be calculated from the voltage curves
f the individual electrodes. In the latter case knowledge of the
ell balance is also required.

It is instructive to make an Ohmic approximation and assume
stack is a constant in space and time and higher order terms in

4) are neglected. In this case the mechanics of foil potentials and
urrents are more easily understood. The general case will be
escribed in Appendix A. When higher order terms are neglected
ne can invert (4)

(x) = Vo(q(x)) − φ(x)

Rstack
(5)
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A rough estimate for the area specific stack impedance can be
obtained from a volume weighted sum of electronic and ion
contributions. For one electrode

Relectrode ≈ T

(
1

εsolidσ
+ 1

εporeκ

)
(6)

where T is the electrode thickness, σ is the electronic con-
ductivity of the solid phase, κ is the conductivity of the elec-
trolyte, and the ε’s are the corresponding volume fractions.
If the volume fraction of inactive materials is negligible then
εsolid + εpore ≈ 1. The wetted separator impedance is similar,
but without the solid phase term. Using conductivities from
[5,6] for 25 �m separator and 100 �m electrodes, one finds
Rstack ∼ 2–5 � cm2.

Eq. (6) ignores the effective impedance of the charge transfer
reactions at the surface of the active particles. Analytic rela-
tions for the effective stack impedance including charge trans-
fer effects have been reported elsewhere [7,3,8]. Using conduc-
tivity and exchange current values from ref. [5] for a 100 �m
thick electrode, one finds that the charge transfer resistance
is on the order of 3 � cm2 per electrode. In total one expects
Rstack ≈ 10 � cm2 using this sort of calculation. Measured val-
ues for power optimized cells [9] are in the range 30–50 � cm2.

The Rstack calculations described above are for one stack
sandwich. Since the real cell has two of these in parallel, it sees
half the calculated stack impedance. In addition, when inter-
p
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where

α2 = W(RA + RC)

Rstack
(9)

3.4. Segmented solution

Every unique tab position is a point source or sink for current.
The degenerate case where two tabs are directly opposite each
other (one on the anode and one on the cathode) amounts to
only one unique tab position. Tabs at the ends of the electrodes
(x = 0 or x = L) are referred to as external tabs. The x interval
between any two neighboring tab positions will be referred to
as a segment. For example, in Fig. 1 above, the cathode foil has
one internal tab and no external tabs, the anode foil has two
external tabs and no internal tabs. Both anode and cathode have
two segments, one from 0 to L/2, and the other from L/2 to L.
In particular there is a segment boundary on the anode directly
opposite the cathode tab.

Defining Lj = xj+1 − xj as the length of the foils in the x
direction for segment j, the dimensionless group αLj describes
the in-plane foil impedance relative to the through-plane stack
impedance, and determines the curvature of the foil current
profiles in segment j. When αLj � 1 the through-plane stack
impedance dominates the cell impedance, consequently the in-
plane foil current profiles will be linear, and the through-plane
stack current distribution will be close to constant. Conversely
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φleft
j
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φ
p
j +

F

φ

φ

reting stack impedances for spiral wound cells reported in the
iterature, these reported numbers are usually for two stacks in
arallel.

.3. Potential equation

In general all currents and potentials are functions of position
nd time (x and t). For brevity below it is assumed this is implied
nless required or otherwise stated. Differentiating (1) and using
2) and doing similarly for the cathode

RAWi = ∇2φA,

−RCWi = ∇2φC.

ubtracting gives

2φC − ∇2φA = ∇2φ = −W(RA + RC)i. (7)

sing (5) one finds

2φ = −W(RA + RC)
Vo − φ

Rstack

∇2 − α2)φ = −α2Vo (8)

(∇2 − α2)

(∇2 − α2)

(∇2 − α2)
hen αLj � 1 the in-plane foil impedance dominates, the foil
urrent profiles will be curved and the through-plane stack cur-
ent will be peaked at the tabs.

.5. General solution

A solution of (8) is called the particular solution, φp. Any
inear combination of the solutions to the homogeneous equation

∇2 − α2)φ = 0 (10)

an also be added to φp. When α is constant, exp(±αx) are
wo linearly independent solutions to (10) and the homogenous
olutions will the be same for all segments.

Anticipating the use of external current boundary conditions,
or calculational convenience homogeneous solutions are calcu-
ated with unit slope at one end of a segment and zero slope at
he other end of a segment, and the particular solution with zero
lope at both ends. For segment j

= 0, ∇φleft
j

∣∣∣
x=xj

= 1, ∇φleft
j

∣∣∣
x=xj+1

= 0

t = 0, ∇φ
right
j

∣∣∣
x=xj

= 0, ∇φ
right
j

∣∣∣
x=xj+1

= 1

α2Vo = 0, ∇φ
p
j

∣∣∣
x=xj

= 0, ∇φ
p
j

∣∣∣
x=xj+1

= 0.

(11)

or constant α (Ohmic condition) one finds

left
j = sinh(α[xj+1 − x])

α sinh(α[xj+1 − xj])

right
j = sinh(α[xj − x])

α sinh(α[xj+1 − xj])
.
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While analytic techniques exist for solving (11) for the Ohmic
case (operator inversion methods) the resulting solution, ex-
pressed as a double integral, must be evaluated numerically.
In practice it is much easier to solve (11) numerically using a
tridiagonal solver.

Now the general solution for any segment can be written as

φj = φ
p
j + ajφ

left
j + bjφ

right
j

where the constants aj and bj must be determined by boundary
conditions. Due to the special properties of φleft and φright the
external current coming in from the left end of the segment will
determine aj and current from the right will determine bj . Be-
cause of the special choice of boundary conditions, the physical
interpretation of the particular solution, φp, is as follows:

• Initially when Vo is constant then φp = Vo.
• After some current has passed Vo becomes non uniform. Now

φp − Vo corresponds to potentials (and therefore currents)
along the foils resulting only from the changes in state of
charge along the length of the segment, the so called internal
mixing currents [10]. Mixing currents have the interesting
property that they keep running after the external current is
turned off.

3.6. Electrode potentials and currents
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Since φC(x) − φA(x) = φ(x) for all x one finds that
−RAIA(xo) = −RCIC(xo) = c andφA(xo) = φC(xo) = d. c has
dimensions of electric field, i.e. (V cm−1). Defining the relative
foil resistances

rA = RA

RA + RC
(17)

rC = RC

RA + RC
(18)

results in

φA = −rA(φp + aφleft + bφright) + cx + d (19)

φC = rC(φp + aφleft + bφright) + cx + d (20)

IA = 1

RA + RC
(∇φp + a∇φleft + b∇φright) − c

RA
(21)

IC = − 1

RA + RC
(∇φp + a∇φleft + b∇φright) − c

RC
(22)

There are now four constants (a, b, c, d) which need to be de-
termined by external boundary conditions. Each segment has its
own profiles for potential and current, and therefore its own set
of constants (a, b, c, d).
Since all the physical boundary conditions are defined in
erms of the individual electrode potentials, (φA, φC) and cur-
ents (IA, IC) rather than the stack potential and current, it is
seful to derive expressions for the electrode potentials and cur-
ents. Using (7) and briefly dropping all segment indices one
nds

(x) = − ∇2φ

W(RA + RC)
(12)

nd putting this into (2) and (3) and integrating one finds

A = −W

∫ x

xo

i(x′) dx′ = 1

RA + RC
∇φ + IA(xo) (13)

nd

C = W

∫ x

xo

i(x′) dx′ = − 1

RA + RC
∇φ + IC(xo) (14)

here IA(xo) and IC(xo) are integration constants. One can now
lug these into integrated forms of (1)

A = −RA

∫ x

xo

IA(x′) dx′

= − RA

RA + RC
φ − RAIA(xo)x + φA(xo) (15)

nd

C = −RC

∫ x

xo

IC(x′) dx′

= RC

RA + RC
φ − RCIC(xo)y + φC(xo)

(16)
3.7. Boundary conditions

3.7.1. Categorizing tabs
The number of tabs for each type are defined in Table 1. The

ni internal tabs are located at positions xj , j = 1, . . . , ni. The
electrode potentials above are only valid in the regions between
these tabs. Right at the tabs φA and φC will be continuous but
non analytic, i.e. the first derivatives, the in-plane foil currents
IA and IC, are not always continuous. Physically the in-plane
foil currents will exhibit a step change (usually changing sign
as indicated by the arrows in Fig. 1) at each tab attached to
that electrode. The full potential must be constructed from ni +
1 segments, so 4(ni + 1) boundary conditions are required to
determine all the aj , bj , cj , dj’s (using j as a segment index).
The problem is now reduced to that of bookkeeping for all the
boundary conditions.

3.7.2. Global boundary conditions
For the first segment, j = 0, one can arbitrarily set

φA0(0) = 0 (23)

since only potential differences are important. Alternatively one
can just set d0 = 0. Also the total current flowing into (or out

Table 1
Tab counting

Tab type Internal External Total

Anode ni
A 0 ≤ ne

A ≤ 2 nA = ni
A + ne

A ≥ 1

Cathode ni
C 0 ≤ ne

C ≤ 2 nC = ni
C + ne

C ≥ 1

Both ni 0 ≤ ne ≤ 4 n = nA + nC = ni + ne
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of) each electrode is fixed
nA∑

j∈anode

(IAj(xj) − IAj(xj−1)) = −I (24)

nC∑
j∈cathode

(ICj(xj) − ICj(xj−1)) = I. (25)

These two are linearly dependent, so they only count as one
boundary condition. The impedance of the tab material is as-
sumed to be negligible so the potentials of all tabs on a given
electrode are all equal

φA(xj) = φA(xk), j �= k, j, k ∈ anode

φC(xj) = φC(xk), j �= k, j, k ∈ cathode.

There will be n − 2 such conditions. When there are no external
tabs the currents at the boundaries will all be 0

IA(0) = IC(0) = IA(L) = IC(L) = 0.

When some external tabs are present there will be 4 − ne such
conditions.

3.7.3. Local boundary conditions
At each of the tab positions, xj , the potentials (but not the

current) on the tabbed electrode must be joined. At the corre-
s
i
F
a
o

φ

φ

I

φ

φ

I

T

2

b

Fig. 4. Schematic showing two segments and three segment boundaries x0, x1

and x2.

3.7.4. Example of boundary conditions
In order to clarify, all boundary conditions for the tab ar-

rangement in Fig. 1 will be listed. To facilitate this, the two
segments and three segment boundaries, x0, x1 and x2, are
shown in Fig. 4. All boundary conditions are listed in Table
2. Eqs. (19)–(22) can substituted into the relations in the last
column of Table 2, to obtain a linear system of equations for
{a0, b0, c0, d0, a1, b1, c1, d1}.

3.7.5. Equation system
Inserting the potential and current expressions (19)–(22) into

the boundary conditions results in a system of algebraic equa-
tions for the aj, bj, cj, dj coefficients. This system can be solved
manually, numerically or using symbolic algebra system, de-
pending on the number of segments involved and the desired
output. In this work the numerical approach is preferred for the
following reasons:

• One must resort to numerical methods anyway for Li-ion sys-
tems where the OCV, Vo(q), is a non-trivial measured func-
tion, or when the stack impedance becomes non trivial.

• I do not find the messy analytic expressions resulting from
solving a two or more segment problem very enlightening.

3.8. Cell voltage and impedance

d
c
T

T
A

ent(s
ponding segment boundary on the opposing electrode (assum-
ng there is no tab there) the potential and current must be joined.
or example if there is an anode tab at xj then both the anode
nd cathode potentials, and the cathode current must be joined
r matched

Cj−1(xj) = φCj(xj)j ∈ cathode

Aj−1(xj) = φAj(xj)j ∈ cathode

Aj−1(xj) = IAj(xj)j ∈ cathode

Aj−1(xj) = φAj(xj)j ∈ anode

Cj−1(xj) = φCj(xj)j ∈ anode

Cj−1(xj) = ICj(xj)j ∈ anode.

here will be 3ni such conditions. So in total there are

+ n − 2 + 4 − ne + 3ni = 4 + 4ni

oundary conditions as required.

able 2
ll boundary conditions for the three tab cell design

Type Electrode Segm

End current Cathode 0

End current Cathode 1

External current Cathode 0, 1

Potential join Cathode 0, 1

Potential join Anode 0, 1

Current join Anode 0, 1

Tab potentials Anode 0, 1

Arbitrary potential Anode 0
Once values for all the aj, bj, cj, dj coefficients have been
etermined, one can graph and interpret internal quantities, i.e.
urrents and potentials for both the electrode foils and the stack.
hese internal quantities are not very amenable to experimental

) Location(s) Condition

x0 I0
C(x0) = 0

x2 I1
C(x2) = 0

x1 I0
C(x1) − I1

C(x1) = I

x1 φ0
C(x1) = φ1

C(x1)

x1 φ0
A(x1) = φ1

A(x1)

x1 I0
A(x1) = I1

A(x1)

x0, x1 φ0
A(x0) = φ1

A(x2)

x0 φ0
A(x0) = 0
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verification. This means that the calculation is the most practical
method of accessing this information, but only if it is right! In
order to decide one must calculate the external cell voltage and
impedance and compare with experiment for a cell design for
which samples or data are available.

The cell voltage is simply the potential difference between
any anode tab and any cathode tab

Vcell = φC(yi) − φA(yj), i ∈ cathode, j ∈ anode.

One can define two distinct versions of cell impedance, finite
difference

Rfd
cell(I) = Vcell(I = 0) − Vcell(I)

I

and differential

Rdiff
cell = ∂Vcell

∂I
.

When approximating the stack impedance as an Ohmic or con-
stant value, these two versions of the cell impedance should
be identical. It also turns out that under these conditions the
cell impedance remains constant during the discharge. The fi-
nite difference version is fairly straightforward to calculate but
requires one to keep track of the I = 0 solutions to all the equa-
tions above. Calculating the differential form requires the so-
lution of a second system of boundary condition equations that
are implicitly differentiated with respect to I. The solution yields
∂

3

g
f
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q

w
s

q

w
e
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n

p
w
e
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T

3

d

discharges all internal quantities acquire a time dependence, and
the state of charge in the stack varies according to

q(x, t) =
∫ t

0
i(x, t′) dt′

which quickly induces non-uniformity in Vo(q). Non-trivial ef-
fects can arise from the shape of Vo(q). When it is flat as a
function of q (voltage plateau) then large composition gradients
can develop along the length of the cell (x direction). When Vo(q)
is steeply sloping, any existing composition gradients along the
length will be quickly eliminated by internal mixing currents
arising from φp.

In practice a numerical simulation is required using stan-
dard finite element methods. Results of such simulations for
an LixMn2O4/Li1−xC6, spiral wound Li-ion cell will be de-
scribed in the next section. The goal is to demonstrate some
of the interesting effects that can occur with the foil currents.
For this purpose it is best to use a constant value for the stack
impedance.

4. Example calculations

4.1. Cell details

Results will the shown for two cell designs using the non
aj/∂I, ∂bj/∂I, ∂cj/∂I, ∂dj/∂I.

.9. Foil heating

In high power applications it is essential to understand heat
eneration effects at high currents. Total heat is easily calculated
rom I2R. However, lot of information about the cell internals
s also available, which can be used to learn where the heat is
enerated. This is another effect that is very difficult to measure
irectly. The local heating rate in the anode foil will be

A(x) = 1

WA
I2

ARA

ith a similar expression for the cathode. qA will have dimen-
ions of (W cm−2). The local heating rate in the stack is

stack(x) = i2Rstack

ith the same dimensions as qA. The local heating rates can
asily be integrated over space to get total heating rates, and/or
ver time to get total heat generated. In order to keep things as
imple as possible, reversible or entropic heating (or cooling) is
ot included in the stack heat generation.

It is worth pointing out that since the foil currents are usually
eaked near the tab positions, the heat generation rate in the foils
ill be even more strongly peaked near the tabs. For example

ven when αL � 1 and the foil currents are linear, the heat
eneration will decay quadratically moving away from a tab.
his will be shown graphically below.

.10. Time dependence

All of the above theory describes the current and potential
istributions at the instant the current is turned on. As the cell
trivial tab arrangement shown in Fig. 1. Cell #1 is intended to be
towards the power optimized end of the spectrum, and cell #2
is intended to be energy optimized. Design parameters for both
cells are shown in Table 3.

The foil resistivities ρA and ρC correspond to Cu and Al re-
spectively. The electrode widths are typical of those found in
commercial 18650 size Li-ion cells. The power optimized cell
(cell #1) uses thicker/longer foils and a thinner stack, which
is indirectly expressed through the smaller stack resistivity. As
discussed above the larger value for αL in cell #1 results in a
non-linear shape for the foil currents. In order to get some sig-
nificant polarization along the electrode foils, a sizeable current
must be applied. In the examples below the current is 50 A of
discharge current.

The OCV curve was calculated by differencing analytic ap-
proximations to V (q) (described in the appendix in ref. [11])
for the anode and cathode active materials. The grid spacings
	x = 0.1 cm, 	t = 0.5 s were used. Because there are no di-
rect comparisons to a real cell in this work, the results for Vcell

Table 3
Example cell designs

Parameter Units Cell #1 Cell #2

WA cm 5.7 5.7
TA �m 15 10
ρA �� cm 1.7 1.7
RA m� cm−1 0.20 0.30
WC cm 5.5 5.5
TC �m 20 15
ρC �� cm 3.1 3.1
RC m� cm−1 0.28 0.38
L cm 200 100
Rstack � cm2 5 50
αL – 4.60 0.86
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Fig. 5. Cell #1 foil potentials φA(x) and φC(x).

and Rcell will not be discussed. Also when Rstack is constant
their behavior is trivial.

4.2. Instantaneous results

In this section results are shown at t = 0, the instant the cur-
rent is turned on. At this point in time the electrons are assumed
to rearrange to their equilibrium charge density distribution, but
no ions have moved. The calculated foil potentials for cell #1
are shown in Fig. 5. In all such figures, the vertical dashed line at
x = L/2 indicates the position of the cathode tab. It should be re-
membered that anode tabs are located at the left and right edges,
x = 0 and x = L. The potentials for cell #2 are qualitatively
similar and are therefore not shown. The anode foil potential is
highest at the tabs and exhibits a minimum half way between
the two tabs. The cathode foil potential is a minimum at the tab.

The foil currents for both cells are shown in Figs 6 and 7.
When viewing these graphs keep in mind that positive currents
are moving to the right in Fig 1 and negative are moving to the
left. Because of the symmetry in the cell designs considered, the
current entering each anode tab is exactly I/2 = 25 A. In the case
of broken symmetry, i.e. moving the cathode tab off center, the
theory would tell us exactly how the current would be unevenly
distributed between the two anode tabs. At the cathode tab one
sees a discontinuity in the current, jumping from 25 A to −25 A.
For internal tabs such current discontinuities are more the rule
t
c
s
c
c
t
T
8
t

4

s

Fig. 6. Cell #1 foil currents IA(x) and IC(x).

Fig. 7. Cell #2 foil currents IA(x) and IC(x).

the state of charge (SOC) becomes non-uniform as a function
of x. This in turn results in a non-uniformity in the open circuit
potential Vo(q(x)), with higher voltages away from the tabs. The
voltage effect will induce in increase in the stack current away
from the tabs. Finally, near the end of discharge the active ma-
terial near the tabs will become used up (discharged), at which
time all current must flow through the stack away from the tabs
where some capacity remains. All of these effects are shown in

Fig. 8. Cell #1 stack current i(x).
han the exception. One can readily see that the foil currents for
ells 1 and 2 are qualitatively different. For cell #2 the currents
how linear decay, as expected since αL is small, whereas the
urrents for cell #1 with larger αL, are noticeably non-linear. For
ell #1 one can also see some asymmetry within each segment,
he currents decay faster near the cathode tab because RC > RA.
his asymmetry is also evident in the stack current shown in Fig.
which is more peaked near the cathode tab than at either anode

ab.

.3. Dynamic effects

As alluded to above the high stack current at the tab locations
een in Fig. 8, is a transitory situation. As the discharge proceeds
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Fig. 9. Cell #1 dynamic evolution of the stack current, i(x, t).

Fig. 10. Cell #1 dynamic evolution of the foil currents, IA(x, t) and IC(x, t).

Fig. 9. Some of the fine structure in these profiles is due to the
non trivial shape of Vo(q).

Similar effects are also observed in the foil currents (Fig. 10).
In particular, at 10% SOC one can see the cathode foil running
almost full current (25 A) for about 40 cm on either side of the
cathode tab, before linear decay begins.

Fig. 11. Cell #1 heating generation breakdown.

Fig. 12. Cell #2 heating generation breakdown.

Fig. 13. Cell #1 dynamic evolution of the total heat generation.

4.4. Heating effects

A break down of various heating effects for both cells, at
t = 0, are shown in Figs. 11 and 12. As anticipated significant
heat generation is predicted near the tabs in cell #1, to which
both the stack and foil contribute. Cell #1 is dominated by foil
heat generation and cell #2 is dominated by more uniform stack
heat generation (note the different y-axis scales). Fig. 13 gives
a flavor for the time dependence of the total heat generation
for the cell #1. One can see that near the end of discharge the
heat generation tends to move away from the tabs, but one never
observes a peak in the heating rate away from the tabs. This is
just a consequence of the dominating effect of foil heating in
this cell.

5. Conclusions

The purpose of this work is two-fold

(1) Outline the theory for calculating internal foil currents and
potentials for a general cell design with an unlimited number
of tabs, randomly located.

(2) Provide some qualitative understanding of how potentials,
current and heating behaves during discharge of a cell.
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In cells with low stack impedance and long electrodes, polar-
ization effects in the foils cannot be neglected. The value of the
dimensionless group αL is easily calculated, and can be used to
decide if foil polarization is important for any given cell design.
The degree of cell heating caused by the foils will in general
depend on αL, if αL � 1 the foil heating will make a major
contribution, especially near the tabs. This heating will in turn
change the kinetics in the stack through its dependence on elec-
trolyte conductivity, salt diffusion, surface reaction kinetics and
solid state diffusion. Taking proper account of all these inter-
acting effects would require the incorporation of a detailed dy-
namic model for the stack impedance. This may be the subject
of a future paper. I hope that these ideas and methods will be of
assistance in designing high power cells.

Appendix A. Non Ohmic stack impedance

When the relation between the stack potential and stack cur-
rent density is non-linear, then iterative methods will be required.
This is always the case when a detailed stack model is used as de-
scribed in ref. [1]. Because the state of charge quickly becomes
non-uniform along the length of the electrodes, one must im-
plement numerous instances of the full stack model each main-
taining its own state information. The result of this is that the
stack impedance now becomes non-uniform and time depen-
dent: Rstack(x, t). All the boundary conditions equations in (11)
m

c
o

i

This corrected stack current expression can then be used in (7).
The foil and stack model must be iterated until self consistency
is achieved. This amounts to a decoupled two-dimensional sim-
ulation. Results of such simulations may be presented in a future
publication.
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